

Satellite Constellation Fundamentals

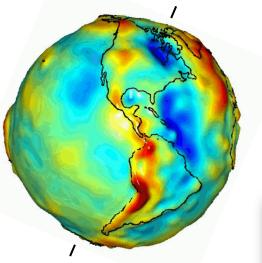
ITU Space Connect

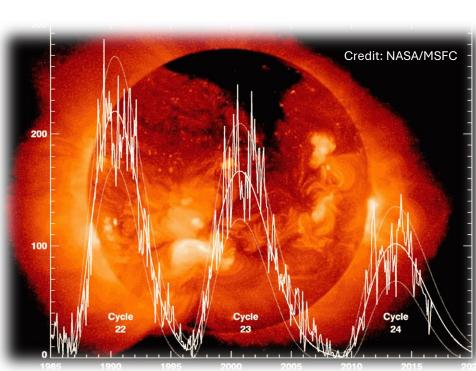
Tim Maclay

Orbit Fundamentals

Kepler's laws of planetary motion ... a simple world, where all orbits are perfect ellipses

Six parameters define an orbit's shape, size, orientation, and a satellite's position within it




A Closer Look

Newton's second law ... a complicated world, where forces dictate motion

- Satellites orbit a wobbly-spinning planet that orbits the Sun on a tilted axis
- The Earth's gravitational field is non-uniform
- Satellites in LEO are subject to atmospheric drag, which is driven by solar activity
- The Sun and Moon tug on satellites too
- The Sun's radiation exerts pressure as well

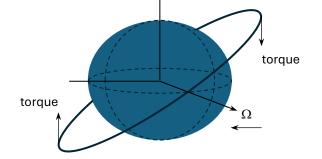
Not All Orbits are Created Equal

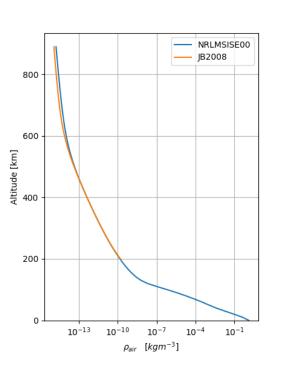
Using perturbing forces as orbital design tools

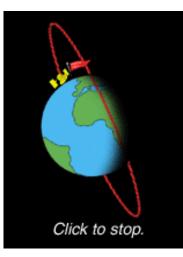
- Careful selection of parameters leads to interesting orbits
 - Equatorial bulge causes RAAN ($\Omega)$ and perigee ($\omega)$ to drift
 - Rates are primarily dependent on altitude and inclination
 - Sun Synchronous

 Ω drift is calibrated to Earth-Sun line, such that for a given location, every pass occurs at the same local time

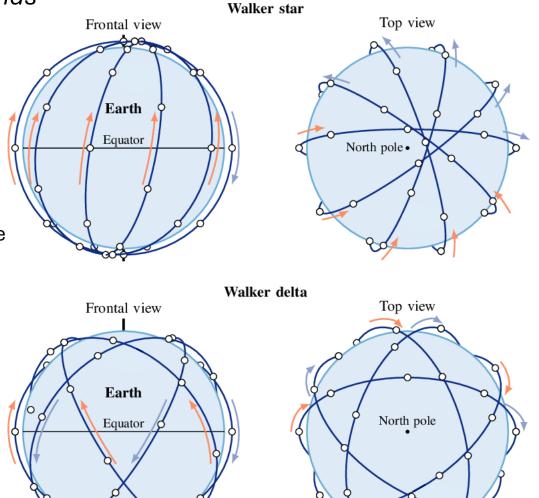
• Exact Repeat


 Ω drift is calibrated to Earth rotation rate, such that ground tracks pass over the same points at regular intervals


• Frozen


Perigee stays at 90°, reducing relative motion in a constellation

- Atmospheric drag provides a natural cleansing mechanism for low-Earth orbits
 - Drag force lowers orbit over time
 - Rate of orbital decay is proportional to atmospheric density
 - Atmospheric density decreases exponentially with altitude
 - Drag offers a natural means of disposal at lower altitudes



Satellite Constellations

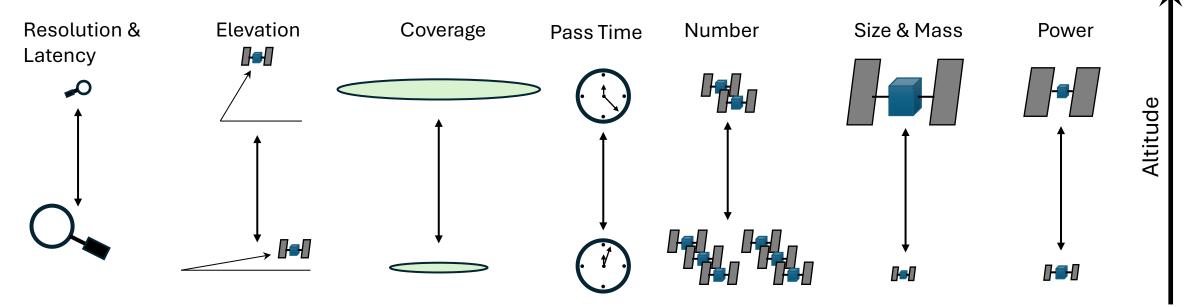
There is no single, ideal constellation ... it all depends

- Definition
 - "A group of satellites working together as a system" – Wikipedia
 - Similar design? Coordinated orbits? Unified control?
- Benefits
 - Typically a matter of coverage
 - Persistence, ubiquity, capacity, resilience, performance
- Applications
 - Historically, communications, observation, navigation
 - Novel concepts
- Architectures
 - Walker delta
 - Walker star
 - Tiered
 - Multi-orbit
 - Ad hoc

Credit: Matthiesen, Bho et al. "Federated Learning in Satellite Constellations." *IEEE Network* 38 (2022): 232-239.

Constellation Design Drivers and Trades

Mission objectives, orbit selection, and satellite design are inextricably intertwined


Principal design drivers

- Mission objectives coverage, capacity, latency, range, visibility, lighting, etc.
- Licensing requirements spectrum, power-flux density, disposal, etc.
- Program constraints cost, schedule, risk, technology, etc.

Additional design considerations

- Satellite maneuverability
- Operational coordination and safety
- Satellite reliability
- Overall system performance

Example Trade Space Metrics: Altitude

Constellation Trends and Challenges

- Constellations are not new
 - GEO: communications and weather
 - MEO: navigation
 - LEO: communications and Earth observation
- Popularity is growing rapidly
 - Reduction of launch costs
 - Proliferation of technology
 - Demand for services
 - Scarcity of natural resources (spectrum, orbits)
- Constellations are getting larger and lower
- Challenges accompany progress
 - Global fair access to space
 - Space environment sustainabillity
 - Dark and quiet skies
 - International norms of behavior
 - Licensing and liability
 - Operational coordination

Thank you!

Tim Maclay

maclay@celestialinsight.com